5.2 Energy transfers in and between organisms (A-Level Only) – Respiration 2– Mark schemes

Q1.				
(a)) (Ab	sorption of) light;	1	
(b)) Inne	er membrane / cristae / stalked particles of mitochondria;	1	[2]
Q2.				
(a)) 🖌	x;		
	x	x v;		
	1	x x		
	•		4	
(b)) (i)	pyruvate / succinate / any suitable Krebs cycle substrate;	1	
	<i>/</i> ··· \		I	
	(11)	ADP and phosphate forms ATP; oxygen used to form water / as the terminal acceptor;		
			2	
	(iii)	Y X W Z; order of carriers linked to sequence of reduction / reduced		
		carriers cannot pass on electrons when inhibited;	2	
			Z	[9]
Q3.		_		
(a)) mat	rix;	1	
(b)) pyru	uvate:		
	ÁDF	o; norganic phosphate:		
	redu	uced NAD;		
	οχγί	gen;	2 max	
(c)) larg	er surface area for electron carrier system / oxidative		
	pho	sphorylation; provide ATP / energy for contraction;	2	
				[5]
•				
Q4.) X =	Carbon dioxide:		
(a)	Y =	Acetyl coenzyme A;		

(ACCEPT Acetyl CoA)

Z = Water;

- (b) (i) Cytoplasm;
 (ii) Mitochondrion; (IGNORE named part)
 (c) On the diagram:
 - (i) **'A**' (ATP used) <u>between</u> glucose and triose phosphate;
 - (ATP produced) between triose phosphate and pyruvate; in Krebs cycle;
 - from electron carriers (to right of bracket & not below grey box);
- (d) Any three from:

(ii)

'B' Any two from:

Source of energy / of phosphate; Active transport; Phagocytosis / endo- / exocytosis / pinocytosis; Bile production; Cell division / mitosis; Synthesis of: glycogen; protein / enzymes; DNA / RNA; lipid / cholesterol; urea;

(e) <u>Any four from</u>: Forms lactate; [extras – C₂H₅OH / CO₂ – CANCEL]

Use of reduced NAD / NADH;

Regenerates NAD;

NAD can be re-used to oxidise more respiratory substrate / correct e.g. / allows glycolysis to continue; Can still release energy / form ATP when oxygen in short supply / when no oxygen;

max 4

1

1

1

max 2

max 3

[15]

Q5.

- (a) (i) ammonia / ammonium ions / compound;
 - (ii) glucose;

1

1

(b)	<u>final</u> to fc	<u>l</u> acceptor for hydrogen: orm water;	2
(c)	glyc NAE	olysis can continue; D can accept more hydrogen;	2
(d)	seco proc or (sha com	ondary / tertiary structure; duces particular shape of active site; ape of) active site; aplementary to shape of substrate;	2
(e)	sodi at a resu subs com	ium ions / non-competitive inhibitor binds to enzyme site other than active site; ulting in change of shape of active site / no longer complementary; strate can no longer bind with the enzyme / enzyme-substrate aplexes no longer formed;	3 [11]
Q6. (a)	(i)	29.47(29.5); <i>(2 marks for correct answer)</i> 40% / 0.4 of 2800 / 38;	
	(ii)	released as heat;	2
(b)	(i)	glucose only partly broken down / only broken down to lactate;	1
	(ii)	lactate / lactic acid has built up / been produced; oxygen used to break down lactate / convert it back to pyruvate / glucose / glycogen;	2 [6]

Q7.

(a)

- (c) converted back to pyruvate / glycogen / glucose / CO₂ and H₂O; reacted with oxygen / <u>oxidised</u>; (reject "breaking down" with respect to glycogen and glucose)
- (d) (i) vasoconstriction / contraction of muscles in arteries / arterioles / arterioles close;
 (reject contraction of arteries / arterioles / capillaries)
 - (ii) supplies oxygen / glucose or <u>removal</u> of carbon dioxide / lactate; so cells can respire when not contracting / breathing;

2

1

2

[7]

Q9.				
(a)	(i)	in case normal coffee differs in some other way / to control concentration of caffeine;		
			1	
	(ii)	not telling them what the drink contained / purpose of experiment;	1	
(b)	(i)	able to continue for longer; (not just increases performance)		
			1	
	(ii)	breakdown of fats; at increased rate / by mobilisation of fat stores;		
			2	
(C)	(1)	idea that volumes of oxygen and carbon dioxide the same; reference to equal moles, or quotient as 1 divided by 1 / or 6 by 6;	2	
	(ii)	alvcogen is a carbohydrate / broken down to alucose, linked to RO.	2	
	(")	with no caffeine, RQ nearer 1.0 / less carbon dioxide exhaled and more oxygen inhaled (or vice versa) / with caffeine higher proportion of		
		fats / fatty acids respired; increased time to exhaustion suggests slower use of glycogen:		
			3	[10]
Q10.				
(a)	(i)	Cytoplasm (of cell);		

(a)	(i)	Cytoplasm (of cell);	
		Accept sarcoplasm/cytosol	
			1
	(ii)	In <u>membranes/cristae</u> (of mitochondria);	
		Reject matrix of mitochondria	1
<i>(</i> ,),			•
(b)	NOS	stops uptake/use of oxygen (by cells);	1
	Stop	a (alastron transport shain of) respiration:	
	Stop	Accept stops exidetive phosphon/lation	
		Accept – stops oxidative prospriorylation	1
	NO	changes shape of protein (in chain):	
			1
	Oxyo	gen no longer required as final electron acceptor (however stated);	
	,	Accept – protein denatured or description	
			1
	As o	xygen conc. gets lower effect of NO lasts longer, because	
	NO r	more likely to interact with protein;	
		Reject accepts hydrogen from etc in 3rd marking point	1
			I 3 max

[5]

Q11.	(
(a)	(mo more mus	e enzymes for ATP production / oxidative phosphorylation; cle cells use more ATP (than skin cells)(not just more respiration);	2	
(b)	(i)	pyruvate;	1	
	(ii)	carbon dioxide formed / decarboxylation; hydrogen released / reduced NAD formed; acetyl coenzyme A produced;	2 max	
(c)	NAE H ⁺ ic carri ener usin H ⁺ / H ⁺ /	0 / FAD reduced / hydrogen attached to NAD / FAD; ons / electrons transferred from coenzyme to coenzyme / ier to carrier / series of redox reactions; rgy made available as electrons passed on; rgy used to synthesise ATP from ADP and phosphate / g ATPase; protons passed into intermembrane space; protons flow back through stalked particles / enzyme;	3 max	[8]
.				
Q12. (a)	(i)	to increase surface area (for carbon dioxide absorption);	1	
	(ii)	oxygen is used / carbon dioxide emitted is absorbed; so decrease in volume / pressure;	2	
	(iii)	change of level of (manometer) liquid over time; bore of tube; mass of snails; time interval;	3 may	
(b)	(i)	<i>valid similarity taking into account SD e.g. between 5 and 15 °C</i> both show little effect of temperature / intakes similar between 5 and 15 °C;	5 max	
		valid difference taking into account SD above 15 °C e.g. rise at 20 °C and above is less when snails kept in sea water;	1	
	(ii)	standard deviations high; means unreliable; (accept 25 °C being out of normal range for snail / not enough temperature readings for 1 mark)	2	

[10]

Q13.

(a) (i) Cytoplasm; Accept - cytosol

	(ii) <u>Inner</u> membrane of mitochondrion Icristae; <i>Reject – crista/ particle</i>	1
(b)	Oxygen is the termina/ acceptor; (No) electron transfer chain / proton transfer / no oxidative phosphorylation; <i>Accept ETC abbreviation</i>	
	Which produces most of the ATP (in aerobic respiration); Only glycolysis takes place; Pyruvate used to make lactate; <i>Accept lactic acid</i>	
	Only produces (net) 2 ATP (per molecule of glucose); Accept only 4 ATP are made	

2 max

1